Building Science + Bullsh*t Seminar Part six: Heating & Ventilation

with Denise Martin & Peter Raimondo

Definition of terms - Recap

Ventilation

A system or means of providing fresh air

Ventilation ACH Air exchange in reference to the ventilation volume of the occupied space, usually measured in m³(fresh air) per hour per m³ (total volume of occupied/ventilated space)

Infiltration Unintentional or accidental introduction of outside air into a building, typically through cracks in the building envelope

Natural Infiltration ACH Infiltration at natural pressure difference, a factor of building wind exposure, building air permeability @50Pa (Blowerdoor test) and small ventilation inefficiencies

Infiltration ACH (n50) Result of a blower door test, Infiltration at artificial (reference) pressure difference of 50Pascals

Comfort & Health - IAQ

Individual perception of comfort is subjective and can't be uniformly applied, but it can be put into a range:

Room air temperature	Winter 20–23ºC, Summer up to 26ºC		
Surface temperatures	18-19ºC, otherwise draft effects are perceived as uncomfortable		
Relative humidity	40%-60%, ideal around 55%		
Air velocity	0.12m/s winter, 0.19m/s summer, permanent air velocity over 0.2m/s is perceived as uncomfortable		
Air quality (CO2 levels, VOC's etc.)	NZS303, Table C1 (1990 may be a bit dated)		
Odours	Although not usually quantified, its being considered in Ventilation design (Unit measured in Dezipol [pollution])		
Noise	35dB(A) (PassiveHouse) inside room noise for ventilation supply criteria, CIBSE guide A 30-36 dB(A) for background noise		

Why Ventilate? 1. Humidity Control (breathing houses)

Base Ventilation to manage moisture generation within the building

	Ventilation ACH min
G4 (AS1)	0.35 (of the total ventilated area) for residential, no minimum in commercial required and not clear on whether it's moisture control specific
G4 (VM1)	0.4 (for bed and living) to control moisture, toilets >5 (!?!)
Passive House/PHPP (also used in H1 and Homestar) based on DIN 1946	0.3 specific minimum for moisture control

Why Ventilate? 2. Indoor Air Quality for occupants

Base ventilation to provide sufficient fresh air

	Supply air minimums for occupants
G4 (AS1)	7.5l/s (27m ³ /h) per person (in residential), 8-18l/s (28.8m ³ /h-64.8m ³ /h) for commercial
G4 (VM1)	Room specific air supply per person, eg. 15l/s (54m³/h) for bathroom and 60l/s (216m³/h) for kitchen
Passive House, PHPP (also used in H1 and Homestar) based on DIN 1946	30 m ³ /h for dwellings, 15-20m ³ /h for schools, up to 60 m ³ /h for sports halls

Current Aust	ralian Guid	elines		European Guidelines		NZS4303 (referenced in	G4, AS1)
Pollutant	Averaging time	Maximum c Value	air quality	www.umweltnet.at www.umweltbundesamt.de		Averaging Time Long term (short term)	Concentration ppm Long term (short term)
CO2	8 hours	850 ppm		8 bits	850ppm	continuous	1.8g/m3, 1000ppm (comfor levels) <3,500 acceptable exposure range)
				Target < 1000ppm	Target < 800ppm		
				Target average p/1h < 1400	Target average p/h < 1000		
				Target average p/xh < 1900	Target average p/x*h < 1400		
CO	15 min	90 ppm (m	g/m³)	15 min	100 mg/m ³		
CO	1 hour	50 ppm (m	g/m³)	1 hour	35 mg/m ³	1 h (external reference)	(40,000 mg/m ³ (35ppm))
CO	8 hours	25 ppm (mg	g/m ³)	8 hours	10 mg/m ³	8h (external reference)	(10,000 mg/m ³ (9ppm))
CO	24 hours	10 ppm (mg	g/m³)	24 hours	7 mg/m ³	1 h (external reference)	(40,000 mg/m ³ (35ppm))
Formaldehyde CH ₂ O	30mins	0.1 mg/m ³		30mins	0.1 mg/m ³		0.4ppm
NO ₂	1year	40 mg/m ³	0.0197ppm	24 <u>hour</u>	250 mg/m ³	1 year	100 mg/m ³ (0.055ppm))
NO ₂	1 hour	200 mg/m ³ 100	0.0987	1 hour	85 mg/m ³		
03	8 <u>hour</u>	mg/m ³	0.0437ppm			1h (external reference)	(100 mg/m ³ (0.05ppm))
PM2.5	1 year	10 mg/m ³					
PM2.5	24 hour	25 mg/m ³		24 <u>hour</u>	25 mg/m ³		
PM10	1 year	20 mg/m ³					
PM10	24 <u>hour</u>	50 mg/m ³ 500					
Total VOC	1 hour	500 mg/m ³		Recommended guidelines VOC	C's		
				low	< 250 mg/m ³		
				average	250 - 500 mg/m ³		
				slightly elevated	500 – 1,000 mg/m ³		
				elevated	1,000 – 3,000 mg/m ³		
				Very elevated	> 3,000 mg/m ³		
SO2						24 hours (external reference)	0.03 (<u>0.14)pr</u>
C ₁₀ H ₆ Cl ₈ Banned in the US in 1988)							5 mg/m ³ , 0.0003pp
Radon							100B

G4/VM1 - CIBSE Guide A (that's more like it)

Classification	Rise in indoor CO ₂	Default value	Range in outdoor	Total indoor
Classification	concentration / ppm	/ ppm	concentration / ppm	value* / ppn
IDA1	<400	350	350-400	700-750
IDA2	400-600	500	350-400	850-900
IDA3	600-1000	800	350-400	1150-1200
IDA4	>1000	1200	350-400	1550 - 1600

ndoor Air Qu

Indoor Air Quality for occupants compared metrics

Rotorua special mention hehe...

Ventilation Strategies

Natural ventilation

- Crack ventilation (infiltration)
- Window Ventilation
- Shaft ventilation

Mechanical ventilation

- Extract ventilation (extract is mechanical, supply is mix of infiltration, window ventilation)
- Supply Ventilation (supply is mechanical, extract is mix of infiltration, window ventilation)
- Balanced ventilation (both supply and extract is through ventilation ducts) with and without heat recovery

- Paired with the correct building permeability...

Table 1 – Best Practice Air Permeability Against Ventilation Strategy				
Ventilation Strategy	Best Practice Air Permeability (AP50)			
Background ventilation and/or intermittent extractors	3.0 – 5.0			
Passive Stack	3.0 – 5.0			
Continuous Mechanical Ventilation	2.0 - 4.0			
Continuous Mechanical Ventilation with Heat Recovery	0.2 – 2.0			
Other	Seek Specialist Advice			

Natural ventilation

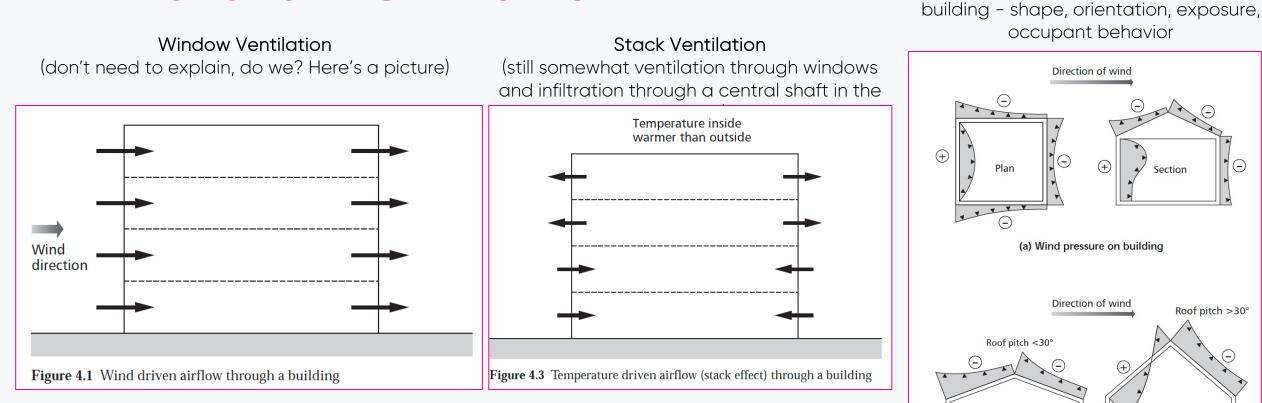


Figure 4.5 Wind pressure; (a) on building, (b) on roof

(b) Wind pressure on roof

Section

Section

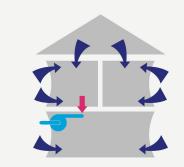
The effectiveness of these methods

highly depends on the individual

 \bigcirc

given in Tables 1 and 2, and

Natural ventilation – trickle vents


Trickle ventilators ≈ 45mm **1.3.5** Trickle ventilators are devices that have an 1m min height opening to the outside. Trickle ventilators shall: difference a) have an opening of no less than 2000 mm² 45mm Option 1 (pp) Within top half of the equivalent aerodynamic area, and wall b) be located to minimise draughts, and 45mm Within bottom half of c) be secured to keep pests and insects out, and 🥹 the wall d) have acoustic attenuation, if required by 3 ≈ 55mm NZBC G6 Airborne and Impact Sound, and e) be controllable and closable in all conditioned 🙆 spaces, and f) be installed in *household units*, providing 55mm they do not contain mechanical supply Option 2 (pp) Within top half of the wall ventilation, and g) have the equivalent aerodynamic area, based on the number of occupants, for the space as

Natural ventilation – trickle vents (a thought experiment)

		Numi	ber of occupan	its				
Ventilator locations	1	2	3	4	5			
High and low level	4000	8000	12,000	16,000	20,000			
High level only	3000	6000	9000	12,000	15,000	converting	to possible o	air flow
Table 2 (Potential air flov	w in m³/h, ba	ised on 5m/s	average	wind speed lik	e Auckland)			
lumber of occupants			1	2	3	А	5	
Number of occupants			1	2	3	4	5	
	1)		1 72m ³	2 144m ³		4 288m ³	5 360m ³	
Number of occupants high and low level (option high level (option 2)	1)		1 72m ³ 54m ³		216m ³	288m ³	5 360m ³ 270m ³	
high and low level (option			54m ³	144m ³ 108m ³	216m ³ 162m ³	288m ³	- I - I	
nigh and low level (option	to achieve 0.	35 ACH (assu	54m ³	144m ³ 108m ³	216m ³ 162m ³	288m ³	- I - I	converting to corresponding

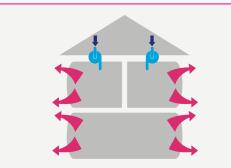
Types of mechanical ventilation – Extract (negative pressure)

Negative Pressure

It sounds negative, but it's the best type if you're on a budget or in an older house. This system consists of an extract fan (or multiple extract fans) installed in the bathroom(s), and kitchen.

What it does: The fan will constantly extract air from the house at a slow rate and then extract more moisture at high speed when the fan is turned "on" while cooking/showering.

How it controls moisture: it removes moist air from the source (bathroom, kitchen, and laundry) and exhausts it outside through a vent. By removing air from the house, it creates a negative pressure which pulls in air from outside through gaps in windows, doors, wall outlets, and any other small openings.


Pros: Removes moisture from the source. Fresh air is warmed (and therefore relative humidity is reduced) as it is drawn into the house. The cheapest effective option.

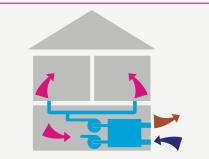
Cons: Make-up air comes from unknown sources (doors, windows, gaps), and may not be as clean as it could be. Can reverse the flow of exhaust gases in wood stoves or gas heaters, but this requires powerful exhaust fans and a very airtight envelope.

Types of mechanical ventilation – Supply (positive pressure)

Positive Pressure

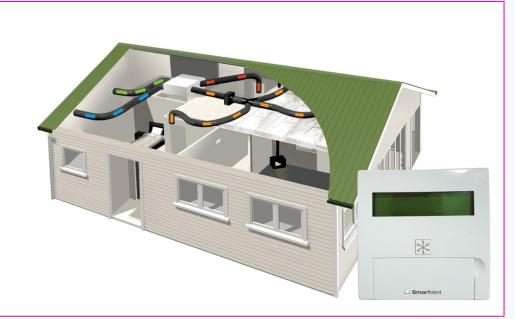
The name makes it sound good, but it's the riskiest type. Takes air from outside and forces it into the building. This is the typical cheapest system sold by HRV, DVS, Unovent, Smartvent, Reliance, Etc.

What it does: The fan(s) pull in air from the attic, filter it, and force it into the house when it is at the right temperature (i.e. 8-28 degrees)
How it alleges to control moisture: it forces attic air into the house in the hopes that the extra air (at whatever temperature and relative humidity) will dilute the moist interior air, and then pushes it outside through gaps in windows, doors, wall outlets, and any other small openings.
Pros: It is less expensive than a balanced system.


Cons: it is much more expensive than a negative system. It is based on hopes and dreams rather than scientific/engineering design. Forces moist air from a warmer area (inside) to a colder area (outside), which inherently carries the risk of condensation and moisture damage. Can work in a very air-leaky house if you're lucky, but can cause problems in a newer house. Branz appraisals for this system specifically state that they do not provide adequate ventilation. This strategy is not recommended.

https://dvs.co.nz/home-ventilation/

Types of mechanical ventilation – Balanced



Balanced Pressure

This system is just right. It removes moist, stale air from your house, and replaces it with fresh air from outside. Usually it's also paired up with heat recovery, but it only reaches peak efficiency when the house is good and airtight. The system consists of multiple ducts throughout the house, half of which remove air from the house, and the other half of which feed fresh air back in. These ducts run next to each other through a heat exchanger so that the incoming air is being heated by the outgoing air.

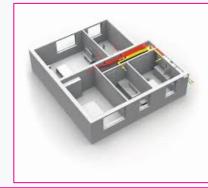
What it does: The fan will constantly extract air from the house at a slow rate and replace it with fresh, outdoor air at the same rate. How it controls moisture: it removes moist air from the source (bathroom, kitchen, and laundry) and exhausts it outside through a vent. The fresh air is brought in through a dedicated vent, heated (and dried) by the outgoing air, and then introduced to the interior to provide fresh, clean, warm air.

Pros: Removes moisture from the source. Fresh air is warmed (and therefore relative humidity is reduced) as it is drawn into the house. Fresh air comes from a known source and can be filtered on the way in, and when paired with an airtight house, this is the highest efficiency system. Cons: Highest price, and only reaches design efficiency within an airtight building envelope.

https://www.smartvent.co.nz/smartvent-balance/

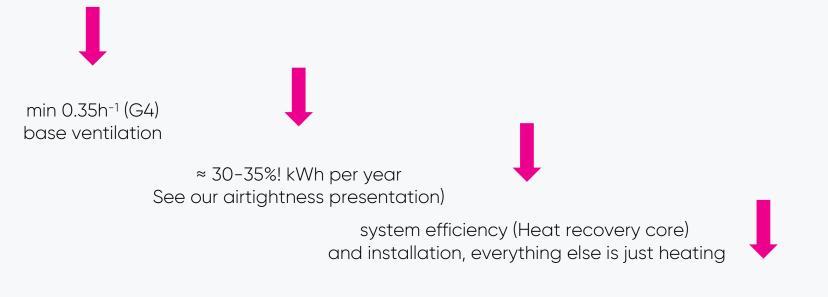
Price: \$2k - \$10k depending on size of house and system

Types of mechanical ventilation – Balanced with Heat Recovery

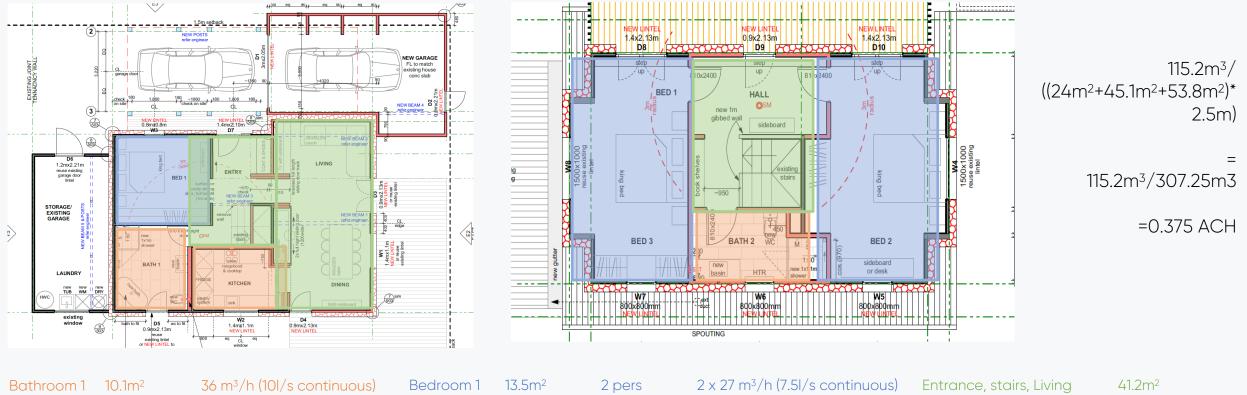

Central building systems (commercial or large residential)

Counter-flow plate heat exchanger - GOLD PX

Central systems apartments, or residential


Through wall systems

Ventilation Energy Efficiency


Ventilation Air change + infiltration air change + heat recovery efficiency (if any) + electric efficiency (fans)

Electrical use to run fans 24/7 1kWh should give you enough electricity to move 2000m³

How to design balanced ventilation - Basics

Bathroom 1	10.1m ²	36 m³/h (10l/s continuous)	Bedroom 1	13.5m ²	2 pers	$2 \times 27 \text{ m}^3/\text{h}$ (7.5l/s continuous)	Entrance, stairs, Living	41.2m ²
Bathroom 2	5.7m ²	36 m³/h (10l/s continuous)	Bedroom 2	15.8m ²	1 pers	2 x 27 m³/h (7.5l/s continuous)	Landing, Hall	12.6m ²
Kitchen	8.2m ²	43.2 m³/h (12l/s continuous)	Bedroom 3	15.8m ²	1 pers	2 x 27 m ³ /h (7.5l/s continuous)	Transfer areas	53.8m ²
Extract total	24m ²	115.2 m³/h (32l/s continuous)	Total Supply	45.1m ²	4 pers	108 m³/h (30l/s continuous)		L.

Heating systems – Heat Pumps Heat pumps are not ventilation systems!

The air source heat pump **absorbs heat from the outside air into a liquid refrigerant at a low temperature**. Using electricity, the pump compresses the liquid to increase its temperature. It then condenses back into a liquid to release its stored heat.

There is no exchange of air!

Heating Systems - Hot water heat pumps with radiators, or underfloor loops

PROS	CONS
Electric efficiency	Storage tank required
Heating and cooling in one	
Radiant heat	

Heating Systems - electric

PROS	CONS
Easy install everywhere	Electric efficiency
Radiant heat	

https://lhz.co.nz

Heating Systems – Fire, Log burners

PROS	CONS
Radiant heat	Emissions are high
	Problematic with airtight design
	Draughts

https://www.kent.co.nz/wood-fires

Heating Systems - Gas

PROS	CONS
	Puts live and health at risk

https://1news.co.nz

Questions

- External Insulation, Dew Point/Interstitial moisture, Airtightness
- Model method for architects
- Alterations modelling not an option

More information?

www.oculusitd.co.nz (H1 page, Q&A, Resources, Podcast)

Building Science + Bullsh*t – Thurs 29th September – H1 Changes Part Seven: Thermal Bridges

